PEVOT蓄电池(中国)供应链有限公司
PEVOT蓄电池(中国)供应链有限公司
PEVOT蓄电池(中国)供应链有限公司
PEVOT蓄电池(中国)供应链有限公司
PEVOT蓄电池产品特点:
1.储备容量高。
2.充放电无酸雾。
3.充电接受能力强,可大电流充电(0.8C-1C)
4.可大电流放电,8秒内30C放电电流,电流不损伤。
5.可超深度放电,可多次尽放电,电池不会损害。
6.适温性极强,可在-30~40℃温度下使用。
7.自放电小,完全免维护,全充电后,常温存放一年仍可正常使用。
8.使用寿命长(设计寿命5~8年),为普通铅酸蓄电池寿命的一倍。
9安全性能好:正常使用下无电解液漏出,无电池膨胀及破裂。
10.绿色环保无污染,报废后全部材料可再生回收,电解质无污染。
11.抗震性能好,能在各种恶劣的环境下安全使用。
12.由于单体电池的内阻、容量、浮充电压一致性好,因此无需均衡充电。
PEVOT蓄电池主要技术参数:
型号 | 电压(V) | 容量(AH) | 重量(KG) | 外型尺寸(mm) | |||
长 | 宽 | 高 | 总高 | ||||
PV6M7U | 12 | 7 | 2.7 | 151 | 65 | 94 | 94 |
PV6M17U | 12 | 17 | 5.6 | 180 | 77 | 167 | 167 |
PV6M24U | 12 | 24 | 7.5 | 165 | 125 | 175 | 175 |
PV6M38U | 12 | 38 | 14.5 | 197 | 165 | 175 | 175 |
PV6M65U | 12 | 65 | 21 | 350 | 166 | 175 | 175 |
PV6M100U | 12 | 100 | 30 | 407 | 173 | 210 | 210 |
PV6M150U | 12 | 150 | 42 | 483 | 170 | 239 | 239 |
PV6M200U | 12 | 200 | 55 | 522 | 240 | 219 | 219 |
本公司销售:GS PORTALA电池 GS-YUASA电池 GS EB 电池 GS SEB 电池 GS 车用电池 YUASA 电池YUASA车用电池 Sanyo工业电池 FB古河 电池 KAWASAKI电池 IBT电池 ROCKET电池 Delkor电池
ATLASBX电池 SHIMASTU电池 POWER电池 ODYSSEY电池 CYCLON电池 genesis电池 Forbatt电池
PILOT电池 MK电池 APC电池 POWEREX电池 NOLLON电池 BAE电池 werbat电池 Berga电池 MOLL电池
VARTA电池 CTM电池 MIL电池 SEC电池 FIAMM电池 BANNER电池 TRANE电池 LEADER电池 pbq电池
VETUS电池 POWER SONIC电池.PEAK电池 VMF电池 BL电池 MOLICEL电池 FUKUDA船用电池 LONG电池B.B BATTERY电池 DAHUA电池 TIMO电池 data safe电池 EnerSys ES Heritage E电池PowerSafe电池 SUPER SONA电池 REDION电池 NorthStar电池 LEADER BATTERY电池EaglePicher电池 ULTRACELL电池 GIANT电池 SHIP NICKEL-CADMIUM BATTERY电池 DAHUA电池
JOVYATLAS电池 INTERSTATE电池 ACDELCO电池 ROTEK电池 KOBE电池 WING电池
INTERSTATE BATTERIES电池 松下panasonic蓄电池 EXIDE蓄电池 荷贝克Power.com蓄电池
RS电池 SUN BATTERY电池 SSB电池 AMPTECH蓄电池 NUMAX电池 HANKOOK电池 RJ电池E XODUS电池.Tysonic Battery电池 DYNAMIS电池 REGNANT电池 LUCAS电池 VISION电池 POWERCELL电池 SUNLIGHT电池GPS电池 NEWMAX电池 FULL FORCE电池 BEST BATTERY电池 Q BATTERIES电池 ZENITH电池 SKB电池ENERZELL电池 FULLRIVER电池”POWER+”电池 Motolite电池 STARLIGHT电池 XPOWER电池UNICELL电池 MONNSTAR电池 GAMA电池 TYSONIC电池 PR电池 TUDOR电池 TEMRII电池 Enduroline电池HUANYU电池 STERLING电池 POWERLINE电池 CAMDEN电池 SBS电池Yu Power电池 SEBANG电池 HEXA电池PRO RIDER电池 FGS电池 MHB电池 SECURITY BATTERY电池 FULL FORCE 电池 MARATHON电池TENERGY电池 LIFELINE电池 DIAMEC电池 PLATINUM电池 JC电池 WESTECH电池 OFFGRIDTEC电池SIGA电池 NEUON POWER电池 DIAMEC电池 RELY BATTERY电池 SECURITY BATTERY电池KST电池 NOLLON电池 APEX电池 NATIONAL电池 VB电池 WIN电池 GE电池 ARITECH电池 BS电池 SKB电池ENERGY SAFE电池COLORADO电池INTERSTATE电池ENERZELL电池TYSONIC电池VICTRON ENERGY电池NOMAD电池 FUSION电池 BEAUT电池 INTACT BLOCK-POWER电池 RPOWER BATTERY电池 BEAUT电池CELL POWER电池VABO电池INTERLOGIX电池WINNER电池MHB电池PRO RIDER电池EXPERT POWER电池INTERLOGIX电池 SigmasTek电池 BSOL电池 EFFEKTA电池 LP电池DYNO EUROPE电池 MW POWER电池DYNO EUROPE电池 XTREME电池 HPG电池 VIPOW电池 XTREME电池 MULTIPOWER电池 NERBO电池CENTURY电池 GNB蓄电池 大力神C&D蓄电池 理士LEOCH蓄电池 海志HAZE蓄电池 德克DEKA蓄电池ZEUS电池 UITRATECH电池 POWER PATROL电池 DRYPOWER电池 TENERGY电池 IEB电池 FU电池 REMCO电池Wildgame EDRENALINE电池 ELK电池 GP电池 EUROGLOBE电池 AUS电池 SUNLIGHT电池 SUPER POWER电池AMSTRON电池 YUCEL电池 SPARTA电池 BSB电池 UNICELL电池 CTD蓄电池 EXOR蓄电池 GDPAX蓄电池KE蓄电池 CSB蓄电池 复华powerson蓄电池 友联UNIOn蓄电池 CHAMPION蓄电池 康迪斯CONTEST蓄电池koko蓄电池 奥克松CAKS蓄电池 百纳德BND蓄电池 柏克BAYKEE蓄电池 海湖SEALAKE蓄电池汇众HUIZHONG蓄电池 杰斯特JUST蓄电池 contest蓄电池 蓝肯蓄电池 科電蓄电池洛奇 LUOKI蓄电池美华MEIHUA蓄电池 美洲豹LEOPARD蓄电池 欧斯盾蓄电池 瑞达RITAR蓄电池 圣豹SBB蓄电池
PEVOT蓄电池(中国)供应链有限公司对铅酸电池含铅废水的来源,
对铅酸电池含铅废水的来源,PEVOT蓄电池(中国)供应链有限公司危害及深度处理技术及其各自的优缺点进行了综述,深入介绍了国内外膜技术的发展历史,详细探讨了反渗透膜技术的发展及应用前景。
1引言
在铅酸蓄电池的生产过程中,涂板工序、化成工序以及电池清洗工序会产生含铅的重金属废水。铅进入人体后,除部分通过粪便、汗液排泄外,其余在数小时后溶入血液中,阻碍血液的合成,导致人体贫血,出现头痛、眩晕、乏力、困倦、便秘和肢体酸痛等;有的口中会有金属味,以及动脉硬化、消化道溃疡和眼底出血等症状。小孩铅中毒则出现发育迟缓、PEVOT蓄电池(中国)供应链有限公司食欲不振、行走不便和便秘、失眠;若是小学生,还伴有多动、听觉障碍、注意力不集中、智力低下等现象。这是因为铅进入人体后通过血液侵入大脑神经组织,使营养物质和氧气供应不足,造成脑组织损伤,严重者可能导致终身残废。
特别是儿童处于生长发育阶段,对铅比成年人更敏感,进入体内的铅对神经系统有很强的亲和力,故对铅的吸收量比成年人高好几倍,受害尤为严重。目前水资源严重短缺,大量工业用水使得本来就匮乏的淡水资源越来越少。铅蓄电池企业排放的废水虽然达到行业排放的规定,但废水中仍然含有一定浓度的铅,其排放到水体后仍然会对水体造成较大的污染,危害人的身体健康。将含铅废水深度处理后可使得处理后的废水进行工艺的回用,有效的节约了水资源,PEVOT蓄电池(中国)供应链有限公司同时还减少了含铅污染废水的排放,保护环境,所以对含铅废水进行深度处理意义重大。
2国内外含铅废水深度处理的主要技术
21一步净化法
目前市场上出现了集中和、絮凝沉淀、过滤过程为一体的一步净化器。例如,沈阳蓄电池厂新建的污水处理厂即采用此方法,将中和、絮凝、沉淀及过滤三步合为一步,通过一步净化器来完成。一步净化器占地少,节约能耗,使用和操作简便,但它在处理含铅废水时也存在一些问题:一是含铅废水因pH值波动,在连续运行中会出现pH值控制滞后的现象PEVOT蓄电池(中国)供应链有限公司,不容易在沉淀段控制到合适的pH值,从而使得铅的沉淀效果不理想;二是中和沉淀后的废水如果不经有效的过滤等工艺直接进入混凝沉淀处理的过程会因pH值的变化造成沉淀物的解析;三是废水中的含铅浓度在处理的过程中也会有变化,会使絮凝沉淀处理工艺的加药量不容易掌握,从而导致排水中铅的浓度不稳定。
22树脂吸附法
树脂中含有羟基、羧基、PEVOT蓄电池(中国)供应链有限公司氨基等活性基团可与重金属离子进行螯合,形成网状结构的笼形分子,因此能有效地吸附重金属。其中壳聚糖及其衍生物是处理重金属废水的理想材料,许多学者对此研究甚多。王茹等[1]以工业级壳聚糖(脱乙酰度为83%)为吸附剂,去除水溶液中的Pb,在室温条件下,处理质量浓度为100mg/L的Pb溶液时,条件为:壳聚糖投加质量浓度2g/L、粒度20-40目、pH值6-8、吸附时间为15h,该条件下Pb的去除率高达997%以上,残余Pb的质量浓度≤06mg/L。已达到国家废水排放标准(≤10mg/L)的要求。近年来,对改性壳聚糖的研究也大量出现。
23离子交换法
离子交换法靠交换剂自身所带的能自由移动的离子与被处理的溶液中的离子通过离子交换来实现的。推动离子交换的动力是离子间浓度差和交换剂上的功能基对离子的亲和能力。在对某些含铅废水的处理研究中,使用强酸性阳离子交换树脂、在pH值50~52时,PEVOT蓄电池(中国)供应链有限公司用磷酸树脂对排放水进行离子交换处理,铅含量可降到020~053mg/L;对离子交换工艺及相应工艺条件进行运行及考察后,发现含铅量10mg/L的废水经离子交换处理,排出水含铅量为014~018mg/L,达到国家排放水质量标准[2]。然而,处理后的废水出水水质不稳定,回用水水质不能满足生产上工艺用水要求,亦带来洗脱水的二次污染,此法在食品,制药中应用较多。
3铅蓄电池行业含铅废水深度处理的新技术
31新型介孔材料
PEVOT蓄电池(中国)供应链有限公司
32生物吸附法
许多研究表明:
对铅酸电池含铅废水的来源,危害及深度处理技术及其各自的优缺点进行了综述,深入介绍了国内外膜技术的发展历史,详细探讨了反渗透膜技术的发展及应用前景。
1引言
在铅酸蓄电池的生产过程中,涂板工序PEVOT蓄电池(中国)供应链有限公司、化成工序以及电池清洗工序会产生含铅的重金属废水。铅进入人体后,除部分通过粪便、汗液排泄外,其余在数小时后溶入血液中,阻碍血液的合成,导致人体贫血,出现头痛、眩晕、乏力、困倦、便秘和肢体酸痛等;有的口中会有金属味,以及动脉硬化、消化道溃疡和眼底出血等症状。小孩铅中毒则出现发育迟缓、食欲不振、行走不便和便秘、失眠;若是小学生,还伴有多动、听觉障碍、注意力不集中、智力低下等现象。这是因为铅进入人体后通过血液侵入大脑神经组织,使营养物质和氧气供应不足,造成脑组织损伤,严重者可能导致终身残废。
特别是儿童处于生长发育阶段,对铅比成年人更敏感,进入体内的铅对神经系统有很强的亲和力,故对铅的吸收量比成年人高好几倍,受害尤为严重。目前水资源严重短缺,大量工业用水使得本来就匮乏的淡水资源越来越少。铅蓄电池企业排放的废水虽然达到行业排放的规定,但废水中仍然含有一定浓度的铅,其排放到水体后仍然会对水体造成较大的污染,危害人的身体健康。将含铅废水深度处理后可使得处理后的废水进行工艺的回用,有效的节约了水资源,PEVOT蓄电池(中国)供应链有限公司同时还减少了含铅污染废水的排放,保护环境,所以对含铅废水进行深度处理意义重大。
2国内外含铅废水深度处理的主要技术
21一步净化法
目前市场上出现了集中和、絮凝沉淀、过滤过程为一体的一步净化器。例如,沈阳蓄电池厂新建的污水处理厂即采用此方法,将中和、絮凝、沉淀及过滤三步合为一步,通过一步净化器来完成。一步净化器占地少,节约能耗,使用和操作简便,但它在处理含铅废水时也存在一些问题:一是含铅废水因pH值波动,在连续运行中会出现pH值控制滞后的现象,不容易在沉淀段控制到合适的pH值,从而使得铅的沉淀效果不理想;二是中和沉淀后的废水如果不经有效的过滤等工艺直接进入混凝沉淀处理的过程会因pH值的变化造成沉淀物的解析;三是废水中的含铅浓度在处理的过程中也会有变化,会使絮凝沉淀处理工艺的加药量不容易掌握,从而导致排水中铅的浓度不稳定。
22树脂吸附法
树脂中含有羟基、羧基、氨基等活性基团可与重金属离子进行螯合,形成网状结构的笼形分子,因此能有效地吸附重金属。其中壳聚糖及其衍生物是处理重金属废水的理想材料,许多学者对此研究甚多。王茹等[1]以工业级壳聚糖(脱乙酰度为83%)为吸附剂,PEVOT蓄电池(中国)供应链有限公司去除水溶液中的Pb,在室温条件下,处理质量浓度为100mg/L的Pb溶液时,条件为:壳聚糖投加质量浓度2g/L、粒度20-40目、pH值6-8、吸附时间为15h,该条件下Pb的去除率高达997%以上,残余Pb的质量浓度≤06mg/L。已达到国家废水排放标准(≤10mg/L)的要求。近年来,对改性壳聚糖的研究也大量出现。
23离子交换法
离子交换法靠交换剂自身所带的能自由移动的离子与被处理的溶液中的离子通过离子交换来实现的。推动离子交换的动力是离子间浓度差和交换剂上的功能基对离子的亲和能力。在对某些含铅废水的处理研究中,使用强酸性阳离子交换树脂、在pH值50~52时,用磷酸树脂对排放水进行离子交换处理,铅含量可降到020~053mg/L;对离子交换工艺及相应工艺条件进行运行及考察后,发现含铅量10mg/L的废水经离子交换处理,排出水含铅量为014~018mg/L,PEVOT蓄电池(中国)供应链有限公司达到国家排放水质量标准[2]。然而,处理后的废水出水水质不稳定,回用水水质不能满足生产上工艺用水要求,亦带来洗脱水的二次污染,此法在食品,制药中应用较多。
3铅蓄电池行业含铅废水深度处理的新技术
31新型介孔材料
根据国际理论和应用化学联合会(IUPAC)定义,PEVOT蓄电池(中国)供应链有限公司介孔材料指孔径介于2~50nm的多孔材料。介孔材料具有长程结构有序、孔径分布窄、比表面积大(>1000cm2/g)、孔隙率高且水热稳定性好等优点。因此,介孔材料是当今国际上的研究热点和前沿之一。近年来,研究者通过对材料进行化学修饰或改性处理,已制备出了诸多新型功能化介孔材料,对含Hg、Cu、Pb、Cd等的废水治理展示了诱人前景。马国正等[3]以十六烷基三甲基溴化铵为模板剂,合成了A1-MCM-41介孔分子筛,研究表明,Cd2+能定量吸附在A1-MCM-41分子筛上,PEVOT蓄电池(中国)供应链有限公司吸附量为13686mg/g(Cd的初始质量浓度为400mg/L)。AMLiu等用氨基功能介孔材料SBA-15处理含重金属废水,结果显示:SBA-15(NH2)对Cu2+、Zn2+、Cr3+均有很强的去除能力。目前利用新型高效介孔材料吸附剂处理重金属废水仍处于实验研究阶段,吸附剂的价格限制了其在工业上的应用。
32生物吸附法
许多研究表明:PEVOT蓄电池(中国)供应链有限公司活的微生物和死的微生物对重金属离子都有较大的吸附能力,作为生物吸附剂的生物源能够从低浓度的含重金属离子的水溶液中吸附重金属,且有实用价值的微生物容易获得。赵玲等[4]用海洋赤潮生物原甲藻(Prorocentrum micans)的活体和甲醛杀死的藻体对Cu2+、Pb2+、Ni2+、Zn2+、Ag+、Cd2+的吸附能力进行研究,实验证明:金属离子混合液经原甲藻吸附30min后,各离子的浓度显著下降且达到平衡,原甲藻的活体和死体对这6种金属离子具有相似的吸附能力。生物吸附法目前尚处在实验室研究阶段,距离广泛的工业应用还有一段距离。
33膜分离技术
膜分离技术是指在分子水平上不同粒径分子的混合物在通过半透膜时PEVOT蓄电池(中国)供应链有限公司,实现选择性分离的技术,半透膜又称分离膜或滤膜,膜壁布满小孔,根据孔径大小可以分为:微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)、反渗透膜(RO)等,膜分离都采用错流过滤方式。
活的微生物和死的微生物对重金属离子都有较大的吸附能力,作为生物吸附剂的生物源能够从低浓度的含重金属离子的水溶液中吸附重金属,且有实用价值的微生物容易获得。赵玲等[4]用海洋赤潮生物原甲藻(Prorocentrum micans)的活体和甲醛杀死的藻体对Cu2+、Pb2+、Ni2+、Zn2+、Ag+、Cd2+的吸附能力进行研究,实验证明:金属离子混合液经原甲藻吸附30min后,各离子的浓度显著下降且达到平衡,原甲藻的活体和死体对这6种金属离子具有相似的吸附能力。生物吸附法目前尚处在实验室研究阶段,距离广泛的工业应用还有一段距离。
33膜分离技术
膜分离技术是指在分子水平上不同粒径分子的混合物在通过半透膜时PEVOT蓄电池(中国)供应链有限公司,实现选择性分离的技术,半透膜又称分离膜或滤膜,膜壁布满小孔,根据孔径大小可以分为:微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)、反渗透膜(RO)等,膜分离都采用错流过滤方式。
危害及深度处理技术及其各自的优缺点进行了综述,深入介绍了国内外膜技术的发展历史,详细探讨了反渗透膜技术的发展及应用前景。
1引言
在铅酸蓄电池的生产过程中,涂板工序、PEVOT蓄电池(中国)供应链有限公司化成工序以及电池清洗工序会产生含铅的重金属废水。铅进入人体后,除部分通过粪便、汗液排泄外,其余在数小时后溶入血液中,阻碍血液的合成,导致人体贫血,出现头痛、眩晕、乏力、困倦、便秘和肢体酸痛等;有的口中会有金属味,以及动脉硬化、消化道溃疡和眼底出血等症状。小孩铅中毒则出现发育迟缓、食欲不振、行走不便和便秘、失眠;若是小学生,还伴有多动、听觉障碍、注意力不集中、智力低下等现象。这是因为铅进入人体后通过血液侵入大脑神经组织,使营养物质和氧气供应不足,造成脑组织损伤,严重者可能导致终身残废。
特别是儿童处于生长发育阶段,PEVOT蓄电池(中国)供应链有限公司对铅比成年人更敏感,进入体内的铅对神经系统有很强的亲和力,故对铅的吸收量比成年人高好几倍,受害尤为严重。目前水资源严重短缺,大量工业用水使得本来就匮乏的淡水资源越来越少。铅蓄电池企业排放的废水虽然达到行业排放的规定,但废水中仍然含有一定浓度的铅,其排放到水体后仍然会对水体造成较大的污染,危害人的身体健康。将含铅废水深度处理后可使得处理后的废水进行工艺的回用,有效的节约了水资源,同时还减少了含铅污染废水的排放,保护环境,所以对含铅废水进行深度处理意义重大。
2国内外含铅废水深度处理的主要技术
21一步净化法
目前市场上出现了集中和、絮凝沉淀、PEVOT蓄电池(中国)供应链有限公司过滤过程为一体的一步净化器。例如,沈阳蓄电池厂新建的污水处理厂即采用此方法,将中和、絮凝、沉淀及过滤三步合为一步,通过一步净化器来完成。一步净化器占地少,节约能耗,使用和操作简便,但它在处理含铅废水时也存在一些问题:一是含铅废水因pH值波动,在连续运行中会出现pH值控制滞后的现象,不容易在沉淀段控制到合适的pH值,从而使得铅的沉淀效果不理想;二是中和沉淀后的废水如果不经有效的过滤等工艺直接进入混凝沉淀处理的过程会因pH值的变化造成沉淀物的解析;三是废水中的含铅浓度在处理的过程中也会有变化,会使絮凝沉淀处理工艺的加药量不容易掌握,从而导致排水中铅的浓度不稳定。
22树脂吸附法
树脂中含有羟基、羧基、氨基等活性基团可与重金属离子进行螯合,PEVOT蓄电池(中国)供应链有限公司形成网状结构的笼形分子,因此能有效地吸附重金属。其中壳聚糖及其衍生物是处理重金属废水的理想材料,许多学者对此研究甚多。王茹等[1]以工业级壳聚糖(脱乙酰度为83%)为吸附剂,去除水溶液中的Pb,在室温条件下,处理质量浓度为100mg/L的Pb溶液时,条件为:壳聚糖投加质量浓度2g/L、粒度20-40目、pH值6-8、吸附时间为15h,该条件下Pb的去除率高达997%以上,残余Pb的质量浓度≤06mg/L。已达到国家废水排放标准(≤10mg/L)的要求。近年来,对改性壳聚糖的研究也大量出现。
23离子交换法
离子交换法靠交换剂自身所带的能自由移动的离子PEVOT蓄电池(中国)供应链有限公司与被处理的溶液中的离子通过离子交换来实现的。推动离子交换的动力是离子间浓度差和交换剂上的功能基对离子的亲和能力。在对某些含铅废水的处理研究中,使用强酸性阳离子交换树脂、在pH值50~52时,用磷酸树脂对排放水进行离子交换处理,铅含量可降到020~053mg/L;对离子交换工艺及相应工艺条件进行运行及考察后,发现含铅量10mg/L的废水经离子交换处理,排出水含铅量为014~018mg/L,达到国家排放水质量标准[2]。然而,处理后的废水出水水质不稳定,回用水水质不能满足生产上工艺用水要求,亦带来洗脱水的二次污染,此法在食品,制药中应用较多。
3铅蓄电池行业含铅废水深度处理的新技术
31新型介孔材料
根据国际理论和应用化学联合会(IUPAC)定义,PEVOT蓄电池(中国)供应链有限公司介孔材料指孔径介于2~50nm的多孔材料。介孔材料具有长程结构有序、孔径分布窄、比表面积大(>1000cm2/g)、孔隙率高且水热稳定性好等优点。因此,介孔材料是当今国际上的研究热点和前沿之一。近年来,研究者通过对材料进行化学修饰或改性处理,已制备出了诸多新型功能化介孔材料,对含Hg、Cu、Pb、Cd等的废水治理展示了诱人前景。马国正等[3]以十六烷基三甲基溴化铵为模板剂,合成了A1-MCM-41介孔分子筛,研究表明,Cd2+能定量吸附在A1-MCM-41分子筛上,吸附量为13686mg/g(Cd的初始质量浓度为400mg/L)。AMLiu等用氨基功能介孔材料SBA-15处理含重金属废水,结果显示:SBA-15(NH2)对Cu2+、Zn2+、Cr3+均有很强的去除能力。目前利用新型高效介孔材料吸附剂处理重金属废水仍处于实验研究阶段,吸附剂的价格限制了其在工业上的应用。
32生物吸附法
许多研究表明:PEVOT蓄电池(中国)供应链有限公司活的微生物和死的微生物对重金属离子都有较大的吸附能力,作为生物吸附剂的生物源能够从低浓度的含重金属离子的水溶液中吸附重金属,且有实用价值的微生物容易获得。赵玲等[4]用海洋赤潮生物原甲藻(Prorocentrum micans)的活体和甲醛杀死的藻体对Cu2+、Pb2+、Ni2+、Zn2+、Ag+、Cd2+的吸附能力进行研究,实验证明:金属离子混合液经原甲藻吸附30min后,各离子的浓度显著下降且达到平衡,原甲藻的活体和死体对这6种金属离子具有相似的吸附能力。生物吸附法目前尚处在实验室研究阶段,距离广泛的工业应用还有一段距离。
33膜分离技术
膜分离技术是指在分子水平上不同粒径分子的混合物在通过半透膜时,实现选择性分离的技术,半透膜又称分离膜或滤膜,膜壁布满小孔,PEVOT蓄电池(中国)供应链有限公司根据孔径大小可以分为:微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)、反渗透膜(RO)等,膜分离都采用错流过滤方式。